Педагогика

Социология

Компьютерные сети

Историческая личность

Международные экономические и валютно-кредитные отношения

Экономическая теория, политэкономия, макроэкономика

Музыка

Гражданское право

Криминалистика и криминология

Биология

Бухгалтерский учет

История

Правоохранительные органы

География, Экономическая география

Менеджмент (Теория управления и организации)

Психология, Общение, Человек

Философия

Литература, Лингвистика

Культурология

Политология, Политистория

Химия

Микроэкономика, экономика предприятия, предпринимательство

Право

Конституционное (государственное) право зарубежных стран

Медицина

Финансовое право

Страховое право

Программирование, Базы данных

История государства и права зарубежных стран

История отечественного государства и права

Трудовое право

Технология

Математика

Уголовное право

Транспорт

Радиоэлектроника

Теория государства и права

Экономика и Финансы

Экономико-математическое моделирование

Международное право

Физкультура и Спорт

Компьютеры и периферийные устройства

Техника

Материаловедение

Программное обеспечение

Налоговое право

Маркетинг, товароведение, реклама

Охрана природы, Экология, Природопользование

Банковское дело и кредитование

Биржевое дело

Здоровье

Административное право

Сельское хозяйство

Геодезия, геология

Хозяйственное право

Физика

Международное частное право

История экономических учений

Экскурсии и туризм

Религия

Искусство

Экологическое право

Разное

Уголовное и уголовно-исполнительное право

Астрономия

Военная кафедра

Геодезия

Конституционное (государственное) право России

Таможенное право

Нероссийское законодательство

Ветеринария

Металлургия

Государственное регулирование, Таможня, Налоги

Гражданское процессуальное право

Архитектура

Геология

Уголовный процесс

Теория систем управления

Репрограммируемые ПЗУ

Репрограммируемые ПЗУ

Микросхемы и системы памяти постоянно совершенствуются как в области схемотехнологии, так и в области развития новых архитектур. В настоящее время созданы и используются десятки различных типов ЗУ. Важнейшие параметры ЗУ находятся в противоречии. Так, например, большая информационная емкость не сочетается с высоким быстродействием, а быстродействие в свою очередь не сочетается с низкой стоимостью.

Поэтому системам памяти свойственна многоступенчатая иерархическая структура, и в зависимости от роли того или иного ЗУ его реализация может быть существенно различной. Нужно отметить, что от параметров запоминающих устройств в значительной степени зависят технические характеристики вычислительных средств. Место РПЗУ в иерархии запоминающих устройств Для классификации ЗУ (рис. 1) важнейшим признаком является способ доступа к данным.

Полупроводниковые ЗУ делятся на адресные, последовательные и ассоциативные. При адресном доступе код на адресном входе указывает ячейку, с которой ведется обмен. Все ячейки адресной памяти в момент обращения равнодоступны. Эти ЗУ наиболее разработаны, и другие виды памяти часто строят на основе адресной с соответствующими модификациями.

Адресные ЗУ делятся на RAM (Random Access Memory) и ROM (Read-Only Memory). Рис. 1. Виды адресных запоминающих устройств Русские синонимы термина RAM: ОЗУ (оперативные ЗУ) или ЗУПВ (ЗУ с произвольной выборкой). Оперативные ЗУ хранят данные, участвующие в обмене при исполнении текущей программы, которые могут быть изменены в произвольный момент времени.

Запоминающие элементы ОЗУ, как правило, не обладают энергонезависимостью. В ROM (русский эквивалент — ПЗУ, т. е. постоянные ЗУ) содержимое либо вообще не изменяется либо изменяется, но редко и в специальном режиме. Для рабочего режима это 'память только для чтения. RАМ делятся на статические и динамические. В первом варианте запоминающими элементами являются триггеры, сохраняющие свое состояние, пока схема находится под питанием и нет новой записи данных. Во втором варианте данные хранятся в виде зарядов конденсаторов, образуемых элементами МОП-структур.

Саморазряд конденсаторов ведет к разрушению данных, поэтому они должны периодически (каждые несколько миллисекунд) регенерироваться. В то же время плотность упаковки динамических элементов памяти в несколько раз превышает плотность упаковки, достижимую в статических RAM. Регенерация данных в динамических ЗУ осуществляется с помощью специальных контроллеров.

Разработаны также ЗУ с динамическими запоминающими элементами имеющие внутреннюю встроенную систему регенерации, у которых внешнее поведение относительно управляющих сигналов становится аналогичным поведению статических ЗУ. Такие ЗУ называют квазистатическими.

Статические ЗУ называются SRAM (Static RAM), а динамические — DRAM (Dynamic RAM). Статические ОЗУ можно разделить на асинхронные, тактируемые и синхронные (конвейерные). В асинхронных сигналы управления могут задаваться как импульсами так уровнями.

Например, сигнал разрешения работы CS может оставаться неизменным и разрешающим на протяжении многих циклов обращения к памяти. В тактируемых ЗУ некоторые сигналы обязательно должны быть импульсными, например, сигнал разрешения работы CS в каждом цикле обращения к памяти должен переходить из пассивного состояния в активное (должен формироваться фронт этого сигнала в каждом цикле). Этот тип ЗУ называют часто синхронным. Здесь использован термин 'тактируемые', чтобы 'освободить' термин 'синхронные' для новых типов ЗУ, в которых организован конвейерный тракт передачи данных, синхронизируемый от тактовой системы процессора, что дает повышение темпа передач данных в несколько раз.

Динамические ЗУ характеризуются наибольшей информационной емкостью и невысокой стоимостью, поэтому именно они используются как основная палять ЭВМ. Статические ЗУ в 4...5 раз дороже динамических и приблизительно во столько же раз меньше по информационной емкости. Их достоинством является высокое быстродействие, а типичной областью использования — схемы кэш-памяти.

Постоянная память типа ROM(М) программируется при изготовлении методами интегральной технологии с помощью одной из используемых при этом масок. В русском языке ее можно назвать памятью типа ПЗУМ (ПЗУ масочные). Для потребителя это в полном смысле слова постоянная память, т. к. изменить ее содержимое он не может. В следующих трех разновидностях ROM в обозначениях присутствует буква Р (от Programmable). Это программируемая пользователем память (в русской терминологии ППЗУ - программируемые ПЗУ) Ее содержимое записывается либо однократно (в ROM) либо может быть заменено путем стирания старой информации и записи новой (в EPROM и EEPROM). В EPROM стирание выполняется с помощью облучения кристалла ультрафиолетовыми лучами, ее русское название РПЗУ-УФ (репрограммируемое ПЗУ с УФ-стиранием). В EEPROM стирание производится электрическими сигналами. ее русское название РПЗУ-ЭС (репрограммируемое ПЗУ с электрическим стиранием). Английские названия расшифровываются как Electrically Programmable ROM и Electrically Erasable Programmable ROM. Программирование FROM и репрограммирование EPROM и EEPROM производятся в обычных лабораторных условиях с помощью либо специальных программаторов, либо специальных режимов без специальных приборов (для EEPROM). Запись данных и для EPROM и для EЕPROM производится электрическими сигналами. В ЗУ с последовательным доступом записываемые данные образуют некоторую очередь.

Считывание происходит из очереди слово за словом либо в порядке записи, либо в обратном порядке.

Память типа Flash по запоминающему элементу подобна памяти типа EEPROM, но имеет структурные и технологические особенности, позволяющие выделить ее в отдельный вид.

Устройство РПЗУ Устройство микросхем РПЗУ. Основная отличительная особенность микросхем РПЗУ заключается в их способности к многократному (от 10 до 10 тыс.) перепрограммированию, которое осуществляет пользователь. Это свойство микросхемы имеют благодаря применению элементов памяти с возможностью управляемой перемычки.

Функции таких элементов памяти выполняют транзисторы со структурой МНОП (Металл Al — Нитрид кремния SiN4 — Окисел кремния Si02—Полупроводник Si) или транзисторы со структурой ЛИЗМОП (Металл – Окисел кремния – Полупроводник с Лавинной Инжекцией Заряда). Микросхемы РПЗУ подразделяют на две группы: стираемые электрическим сигналом (ЭСППЗУ) и стираемые УФ излучением (СППЗУ). Микросхемы ЭСППЗУ содержат элементы памяти типа МНОП или ЛИЗМОП с двойным затвором. В микросхемах СППЗУ применяется также ЛИЗМОП - элемент памяти с двойным затвором, отличающийся от аналогичных ЭП в микросхемах ЭСППЗУ тем, что требует для стирания УФ излучение.

Элемент памяти со структурой МНОП представляет собой МОП-транзистор с индуцированным каналом n – или р – типа, имеющий двуслойный диэлектрик под затвором.

Верхний слой сформирован из нитрида кремния, нижний—из окисла кремния, причем нижний слой значительно тоньше верхнего. Если к затвору относительно подложки приложить импульс напряжения положительной полярности с амплитудой 30... 40 В, то под действием сильного электрического поля между затвором и подложкой электроны получат достаточную энергию, чтобы преодолеть тонкий диэлектрический слой и попасть на границу раздела двух диэлектриков.

Поскольку верхний слой имеет значительную толщину, то электроны не могут его пройти и накапливаются внутри подзатворного слоя.

Накопленный под затвором заряд электронов снижает пороговое напряжение МНОП-транзистора и тем самым смещает передаточную характеристику влево (рис. 2). Состояние ЭП с зарядом под затвором соответствует лог. 1. Состояние ЭП без заряда под затвором соответствует лог. 0. Рис. 2. Элементы памяти РПЗУ а) со структурой МНОП б) передаточная характеристика МНОПтранзистора в) со структурой ЛИЗМОП - транзистора г) расположение ЭП в накопителе В этом состоянии передаточная характеристика МНОП-транзистора занимает положение с более высоким порогом отпирания.

Процесс программирования микросхем ЭСППЗУ происходит в два этапа. На первом этапе стирают информацию во всех МНОП - элементах памяти. Для этого импульсом напряжения отрицательной полярности, прикладываемым на затвор относительно подложки, с амплитудой 30 ... 40 В электроны вытесняются из подзатворного диэлектрика в подложку.

Следовательно, при стирании информации элемент памяти получает состояние лог. 0. На втором этапе производят выборочную запись в нужные ЭП лог. 1 импульсом напряжения положительной полярности, подаваемым на затвор относительно подложки. На практике режимы стирания и записи осуществляют напряжением одной полярности: отрицательной для рМНОП - элементов и положительной для nМНОП - элементов памяти. Эта возможность основана на использовании явления лавинной инжекции электронов под затвор, которая происходит при соединении затвора с подложкой и подаче на сток и исток импульса напряжения относительно подложки и затвора такой полярности, чтобы переходы между подложкой и стоком, истоком оказались под обратным смещением.

Амплитуда импульса должна быть достаточной для возникновения в переходах электрического пробоя.

Типичные значения напряжения программирования лежат в пределах 20... 30 В. В результате электрического пробоя переходов в них происходит лавинное размножение носителей заряда и инжекция части этих носителей, обладающих достаточной кинетической энергией, на границу между слоями подзатворного диэлектрика. При считывании на затвор подают напряжение Uсч, значение которого лежит между двумя пороговыми уровнями. Если в МНОП-транзистор записана единица, то он откроется, а при нуле останется в закрытом состоянии. В зависимости от этого, как видно из рис. 2, г , в разрядной шине либо будет протекать ток на выход, либо нет.

Усилитель считывания трансформирует состояние шины в сигнал с уровнем лог. 0 или лог. 1 на выходе микросхемы.

Микросхемы с элементами памяти на рМНОП-транзисторах имеют сравнительно низкое быстродействие, высокое напряжение программирования 30 ... ... 40 В и требуют двух источников питания. Для улучшения характеристик микросхем ЭСППЗУ широко применяют технологию n-канальных МНОП-структур. Такие элементы памяти устроены аналогично рассмотренным, но имеют обратный тип проводимости подложки, стока и истока.

Микросхемы на nМНОП-транзисторах обладают втрое превосходящим быстродействием, сниженным до 21 ...25 В напряжением программирования и работают от одного источника питания.

Элемент памяти на транзисторе ЛИЗМОП с двойным затвором показан на рис. 2. Он представляет собой n - канальный МОП-транзистор, у которого в подзатворном однородном диэлектрике окисла кремния сформирована изолированная проводящая область из металла или поликрнсталлического кремния. Этот затвор получил название «плавающий», поскольку при наведении на нем электрического заряда его потенциал может изменяться в широких пределах, т. е. быть «плавающим». В режиме программирования на управляющий затвор, исток и сток подают импульс напряжения программирования положительной полярности с амплитудой 21 ...25 В. В обратносмещенных переходах сток—подложка и исток— подложка возникает процесс лавинного размножения носителей заряда и часть электронов инжектирует на плавающий затвор. В результате накопления на нем отрицательного заряда передаточная характеристика транзистора смещается вправо, т. е. в область более высокого порогового напряжения, что соответствует записи в элемент памяти лог. 0. Стирание записанной информации осуществляют вытеснением заряда с плавающего затвора. Эту процедуру выполняют дзумя способами; в микросхемах ЭСППЗУ — импульсом напряжения на управляющем затворе положительной полярности, а в микросхемах СППЗУ — с помощью УФ излучения, под воздействием которого в результате усиления теплового движения электроны рассасываются с плавающего затвора, перемещаясь в подложку.

Состояние ЛИЗМОП-элемента памяти без заряда на плавающем затворе соответствует лог. 1. В этом состоянии транзистор имеет более низкий пороговый уровень, т. е. его передаточная характеристика смещается влево. В режиме считывания микросхемы РИЗУ с элементами памяти на ЛИЗМОП-структурах работают так же, как микросхемы с МНОП-элементами памяти.

Микросхемы РПЗУ относятся к группе энергонезависимых. При отсутствии достаточно высоких напряжений, какими являются напряжения программирования, состояния элементов памяти на МНОПи ЛИЗМОП-транзисторах могут оставаться неизменными длительное время как при наличии питания, так и при его отсутствии.

Например, для микросхемы СППЗУ К573РФ6 гарантийный срок сохранения информации без питания около пяти лет.

Устройство, принцип действия, микросхем СППЗУ и ЭСППЗУ и режимы управления их работой во многом аналогичны. Рис. 3. Структура микросхемы ЭСППЗУ Рассмотрим принцип построения ЭСППЗУ на примере микросхемы КР1601РРЗ информационной емкостью 2 Кбита. В этой микросхеме элементами памяти являются МНОП-транзисторы.

Структурная схема (рис. 3) содержит все функциональные узлы. необходимые для обеспечения работы микросхемы в качестве ПЗУ: матрицу накопителя с элементами памяти, дешифраторы кода адреса строк и столбцов, селектор (ключи выбора столбцов), устройство ввода-вывода. В структуре микросхемы предусмотрены также функциональные узлы, с помощью которых осуществляется программирование, т. е. реализуются режимы стирания и записи информации: коммутаторы режимов, формирователи импульсов напряжений требуемой амплитуды и длительности. Для управления работой микросхем РПЗУ применяют полностью или частично следующие сигналы: CS — выбор микросхемы. ОЕ—разрешение выхода, PR—разрешение программирования, ER—стирание. Для программирования микросхемы нуждаются в дополнительном источнике напряжения U PP . Накопитель с матричной организацией содержит массив элементов памяти, размещенных на пересечениях 128 строк и 128 столбцов. Всего в накопителе находится 16384 элемента памяти.

Управление накопителем осуществляют семью старшими разрядами А4... А10 адресного кода. Им выбирают строку, в которой находится 128 элементов памяти или 16 восьмиразрядных ячеек памяти.

Информационные сигналы, считанные с элементов памяти выбранной строки, поступают на входы селектора, назначение которого состоит в выборе одного из 16 слов (байт). Селектором управляют четыре младших разряда А0 ... А3 адресного кода.

Выбранное селектором восьмиразрядное слово поступает в УВВ и далее на выход микросхемы.

Устройство управления под воздействием внешних сигналов обеспечивает работу микросхемы в одном из следующих режимов: хранения, считывания, стирания, записи (при программировании). Многие микросхемы ЭСППЗУ допускают избирательное стирание информации (по адресу). Микросхемы СППЗУ имеют аналогичную структурную схему с тем исключением, что в них нет режима стирания электрическим сигналом и. следовательно, соответствующих функциональных узлов и элементов. Для стирания микросхема СППЗУ помещается в камеру с источником ультрафиолетового излучения. Для проникновения УФ лучей к кристаллу в крышке корпуса имеется прозрачное кварцевое окно. Время стирания составляет 30... 60 мин. Микросхемы ЭСППЗУ имеют значительно меньшее время стирания информации, составляющее доли секунды.

Основными характеристиками РПЗУ является: информационная ёмкость в битах, время доступа в микросекундах, мощность и напряжение питания, напряжения считывания а также время перезаписи.

Подобные работы

Репрограммируемые ПЗУ

echo "Микросхемы и системы памяти постоянно совершенствуются как в области схемотехнологии, так и в области развития новых архитектур. В настоящее время созданы и используются десятки различных типов

Пушки Пирса со сходящимся пучком

echo "Отметим, что в этом случае ряд понятий геометрической оптики, такие, как фокусировка, электроннооптическая система и некоторые другие, по существу теряют смысл и могут применяться только условно

Технология и автоматизация производства РЭА

echo "Чесноков А.Г. специальность 2303 факультет Информатики и телекоммуникаций кафедра Радиоэлектронные и телекоммуникационные устройства и системы Дневной факультет - семестр 1 Вечерний факультет -

Разработка макета системы персонального вызова

echo "Применение систем персонального вызова позволяет в значительной мере сократить потерю рабочего времени, расходуемого на поиски требуемого человека. Автоматизация поиска уменьшает это время боле

Пушки Пирса с параллельным пучком

echo "Нетрудно представить, что расчет пушек методом анализа представляет весьма трудоемкую операцию. В методе синтеза определение геометрии электродов и конфигу рации магнитного поля, обеспечивающих

Сверхпроводимость

echo "Эксперименты показывают, что если создать ток в замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень до

Электроснабжение рассредоточенных потребителей ХХХ района

echo "Координаты центра электрических нагрузок определяются по формулам "; echo ''; echo " (1), "; echo ''; echo " (2), где S i – полная расчётная мощность на вводе i-го потребителя, кВА; х i у i – ко

Сверхпроводимость

echo "Электрическое сопротивление в сверхпроводящем состоянии точно равно нулю или по крайней мере так близко к нулю, что не наблюдалось ослабления тока в сверхпроводящем кольце в течение более чем го